Solar Selective Volumetric Receivers for Harnessing Solar Thermal Energy

Author:

Khullar Vikrant1,Tyagi Himanshu2,Otanicar Todd P.3,Hewakuruppu Yasitha L.4,Taylor Robert A.5

Affiliation:

1. Mechanical Engineering Department, Thapar University, Patiala 147004, Punjab, India e-mail:

2. School of Mechanical, Materials, and Energy Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India

3. Department of Mechanical Engineering, The University of Tulsa, Tulsa, OK 74104

4. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney 2052, Australia

5. School of Mechanical and Manufacturing Engineering, School of Photovoltaics and Renewable Energy Engineering, The University of New South Wales, Sydney 2052, Australia

Abstract

Given the largely untapped solar energy resource, there has been an ongoing international effort to engineer improved solar-harvesting technologies. Toward this, the possibility of engineering a solar selective volumetric receiver (SSVR) has been explored in the present study. Common heat transfer liquids (HTLs) typically have high transmissivity in the visible-near infrared (VIS-NIR) region and high emission in the midinfrared region, due to the presence of intramolecular vibration bands. This precludes them from being solar absorbers. In fact, they have nearly the opposite properties from selective surfaces such as cermet, TiNOX, and black chrome. However, liquid receivers which approach the radiative properties of selective surfaces can be realized through a combination of anisotropic geometries of metal nanoparticles (or broad band absorption multiwalled carbon nanotubes (MWCNTs)) and transparent heat mirrors. SSVRs represent a paradigm shift in the manner in which solar thermal energy is harnessed and promise higher thermal efficiencies (and lower material requirements) than their surface absorption-based counterparts. In the present work, the “effective” solar absorption to infrared emission ratio has been evaluated for a representative SSVR employing copper nanospheroids/MWCNTs and Sn-In2O3 based heat mirrors. It has been found that a solar selectivity comparable to (or even higher than) cermet-based Schott receiver is achievable through control of the cut-off solar selective wavelength. Theoretical calculations show that the thermal efficiency of Sn-In2O3 based SSVR is 6–7% higher than the cermet-based Schott receiver. Furthermore, stagnation temperature experiments have been conducted on a laboratory-scale SSVR to validate the theoretical results. It has been found that higher stagnation temperatures (and hence higher thermal efficiencies) compared to conventional surface absorption-based collectors are achievable through proper control of nanoparticle concentration.

Funder

Science and Engineering Research Board

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3