Influence on Structural Loading of a Wave Energy Converter by Controlling Variable-Geometry Components and the Power Take-Off

Author:

Husain Salman1,Davis Jacob2,Tom Nathan1,Thiagarajan Krish2,Burge Cole3,Nguyen Nhu2

Affiliation:

1. National Renewable Energy Laboratory Department of Water Power, , Golden, CO 80401

2. University of Massachusetts Amherst Department of Mechanical and Industrial Engineering, , Amherst, MA 01003

3. University of Washington Department of Mechanical Engineering, , Seattle, WA 98195

Abstract

AbstractOceans are harsh environments and can impose significant loads on deployed structures. A wave energy converter (WEC) should be designed to maximize the energy absorbed while ensuring the operating wave condition does not exceed the failure limits of the device itself. Therefore, the loads endured by the support structure are a design constraint for the system. Furthermore, the WEC should be adaptable to different sea states. This work uses a WEC-Sim model of a variable-geometry oscillating wave energy converter (VGOSWEC) mounted on a support structure simulated under different wave scenarios. A VGOSWEC resembles a paddle pitching about a fixed hinge perpendicular to the incoming wave fronts. The geometry of the VGOSWEC is varied by opening a series of controllable flaps on the pitching paddle when the structure experiences threshold loads. It is hypothesized that opening the flaps should result in load shedding at the base of the support structure by reducing the moments about the hinge axis. This work compares the hydrodynamic coefficients, natural periods, and response amplitude operators from completely closed to completely open configurations of the controllable flaps. This work shows that the completely open configuration can reduce the pitch and surge loads on the base of the support structure by as much as 80%. Increased loads at the structure’s natural period can be mitigated by an axial power take-off damping acting as an additional design parameter to control the loads at the WEC’s support structure.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3