How Many Trials Are Needed to Estimate Typical Lumbar Movement Patterns During Dynamic X-Ray Imaging?

Author:

Aiyangar Ameet12,Gale Tom3,Magherhi Sabreen3,Anderst William3

Affiliation:

1. Mechanical Systems Engineering, Empa – Swiss Federal Laboratories for Materials Science and Technology , Ueberlandstrasse 129, Duebendorf, Zürich 8600, Switzerland ; , 3820 South Water Street, Pittsburgh, PA 15203

2. Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh , Ueberlandstrasse 129, Duebendorf, Zürich 8600, Switzerland ; , 3820 South Water Street, Pittsburgh, PA 15203

3. Biodynamics Lab, Department of Orthopaedic Surgery, University of Pittsburgh , 3820 South Water Street, Pittsburgh, PA 15203

Abstract

AbstractDynamic biplane radiographic (DBR) imaging measures continuous vertebral motion during in vivo, functional tasks with submillimeter accuracy, offering the potential to develop novel biomechanical markers for lower back disorders based on true dynamic motion rather than metrics based on static end-range of motion. Nevertheless, the reliability of DBR metrics is unclear due to the inherent variability in movement over multiple repetitions and a need to minimize radiation exposure associated with each movement repetition. The objectives of this study were to determine the margin of uncertainty (MOU) in estimating the typical intervertebral kinematics waveforms based upon only a small number of movement repetitions, and to determine the day-to-day repeatability of intervertebral kinematics waveforms measured using DBR. Lumbar spine kinematics data were collected from two participant groups who performed multiple trials of flexion–extension or lateral bending to assess the uncertainty in the mean estimated waveform. The first group performed ten repetitions on the same day. Data from that group were used to estimate MOU as a function of the number of repetitions. The second group performed five repetitions on each of two separate days. MOU was not only movement-specific, but also motion segment-specific. Using just one or two trials yielded a relatively high MOU (e.g., >4 deg or 4 mm), however, collecting at least three repetitions reduced the MOU by 40% or more. Results demonstrate the reproducibility of DBR-derived measurements is greatly improved by collecting at least three repetitions, while simultaneously minimizing the amount of radiation exposure to participants.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3