Affiliation:
1. University of Illinois at Chicago Department of Mechanical, and Industrial Engineering, , Chicago, IL 60607
Abstract
Abstract
The increasing industry energy demand highlights the urgency of demand response management, while the emerging smart manufacturing technologies pave the way for the implementation of real-time price (RTP)-based demand response management towards sustainable manufacturing. The demand response management requires scheduling of manufacturing systems based on RTP predictions, and thus the prediction quality can directly alter the effectiveness of demand response. However, since the general price prediction algorithms and prediction evaluation metrics are not specifically designed for RTP in demand response problems, a good RTP prediction obtained and evaluated by these algorithms and metrics may not be suitable for demand response scheduling. Therefore, in this study, the relationships between the effectiveness of demand response for manufacturing systems and evaluation results from six commonly used metrics are investigated. Meanwhile, a new metric called k-peak distance (KPD), considering the characteristics of the demand response problem, is proposed and compared with the other six metrics. Furthermore, an encoder-decoder long short-term memory recurrent neural network with KPD is proposed to provide better RTP prediction for manufacturing demand response problems. The case studies indicate that the proposed KPD metric shows a 1.8–3.6 times higher correlation with the demand response effectiveness compared to the other metrics. In addition, the production schedule based on the RTP prediction obtained from the proposed algorithm can improve the effectiveness of demand response by 23.4% on average.
Funder
Office of Energy Efficiency and Renewable Energy
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献