Modeling of Finned-Tube Evaporator Using Neural Network and Response Surface Methodology

Author:

Li Ze-Yu1,Shao Liang-Liang1,Zhang Chun-Lu2

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai 201804, China

2. School of Mechanical Engineering, Tongji University, Shanghai 201804, China e-mail:

Abstract

A new response surface methodology (RSM) based neural network (NN) modeling method is proposed for finned-tube evaporator performance evaluation under dry and wet conditions. Two RSM designs, Box–Behnken design (BBD) and central composite design (CCD), are applied to collect a small but well-designed dataset for NN training, respectively. Compared with additional 7000 sets of test data, for all the evaporator performance including total cooling capacity, sensible heat ratio and pressure drops on both refrigerant and air sides, the standard deviation (SD) and coefficient of determination of trained NNs are less than 2% and higher than 0.998, respectively, under dry conditions while those are less than 4% and greater than 0.974, respectively, under wet conditions. Classic quadratic polynomial response surface models were also included for reference. By comparison, the proposed model achieves higher accuracy. Finally, parametric study based on the trained NNs is conducted. This new method can remarkably downsize the training dataset and mitigate the over-fitting risk of NN.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3