Forced Response Reduction of a Blisk by Means of Intentional Mistuning

Author:

Beirow Bernd1,Kühhorn Arnold1,Figaschewsky Felix2,Bornhorn Alfons3,Repetckii Oleg V.4

Affiliation:

1. Mem. ASME Chair of Structural Mechanics and Vehicle Vibrational Technology, Brandenburg University of Technology, Siemens-Halske-Ring 14, Cottbus D-03046, Germany e-mail:

2. Chair of Structural Mechanics and Vehicle Vibrational Technology, Brandenburg University of Technology, Siemens-Halske-Ring 14, Cottbus D-03046, Germany e-mail:

3. MAN Diesel & Turbo SE, Stadtbachstr. 1, Augsburg D-86153, Germany e-mail:

4. Engineering Faculty, Irkutsk State Agrarian University, Irkutsk 664038, Russia e-mail:

Abstract

The effect of intentional mistuning has been analyzed for an axial turbocharger blisk with the objective of limiting the forced response due to low engine order excitation (LEO). The idea behind the approach was to increase the aerodynamic damping for the most critical fundamental mode in a way that a safe operation is ensured without severely losing aerodynamic performance. Apart from alternate mistuning, a more effective mistuning pattern is investigated, which has been derived by means of optimization employing genetic algorithms. In order to keep the manufacturing effort as small as possible, only two blade different geometries have been allowed, which means that an integer optimization problem has been formulated. Two blisk prototypes have been manufactured for purpose of demonstrating the benefit of the intentional mistuning pattern identified in this way: A first one with and a second one without employing intentional mistuning. The real mistuning of the prototypes has been experimentally identified. It is shown that the benefit regarding the forced response reduction is retained in spite of the negative impact of unavoidable additional mistuning due to the manufacturing process. Independently, further analyzes have been focused on the robustness of the solution by considering increasing random structural mistuning and aerodynamic mistuning as well. The latter one has been modeled by means of varying aerodynamic influence coefficients (AIC) as part of Monte Carlo simulations. Reduced order models have been employed for these purposes.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3