Effect of Finite Rotation on the Propagation of Elastic Waves in Constrained Mechanical Systems

Author:

Gau Wei-Hsin1,Shabana A. A.2

Affiliation:

1. Department of Mechanical Engineering, Huafan Institute of Technology, Taipei, Taiwan, R.O.C.

2. Department of Mechanical Engineering, University of Illinois at Chicago, P. O. Box 4348, Chicago, IL 60680

Abstract

In structural systems, impact-induced longitudinal elastic waves travel with finite speeds that depend on the material properties. Using Fourier method of analysis, the exact wave motion can be described as the sum of infinite number of harmonic waves which have the same phase velocity. In this case the medium is said to be nondispersive, since the phase velocities of the harmonic waves are equal and equal to the group velocity of the resulting wave motion. In mechanism systems with intermittent motion, on the other hand, elastic members undergo finite rotations. In this investigation, the effect of the finite rotation, coefficient of restitution, and impact conditions on the propagation of the impact-induced waves in costrained elastic systems is examined. The system equations of motion are developed using the principle of virtual work in dynamics. The jump discontinuities in the system variables as the result of impact are predicted using the generalized impulse momentum equations that involve the coefficient of restitution. It is shown that the phase velocities of different harmonic waves are no longer equal, that is, dispersion occurs in perfectly elastic mechanism members as the result of the finite rotation. The analysis presented in this paper shows that the finite rotation has more significant effect on the phase velocity of the low frequency harmonics as compared to the high frequency harmonics. A rotation-wave number that depends on the material properties and the wave length is defined for each harmonic wave. It is shown that if the angular velocity of the elastic member becomes large such that the rotation-wave number of a mode exceeds one, the associated modal displacement is no longer oscillatory.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coriolis Effect on elastic waves propagating in rods;Journal of Sound and Vibration;2020-10

2. Modeling of Impact in Multibody Systems: An Overview;Journal of Computational and Nonlinear Dynamics;2012-08-31

3. Impact of a planar flexible bar with geometrical discontinuities of the first kind;Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences;2001-12-15

4. THE IMPACT OF FLEXIBLE LINKS WITH SOLID LUBRICATION;Journal of Sound and Vibration;1997-09

5. Computational procedure for simulating the contact/impact response in flexible multibody systems;Computer Methods in Applied Mechanics and Engineering;1997-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3