Single-Phase Liquid Heat Transfer in Microchannels

Author:

Steinke Mark E.1,Kandlikar Satish G.1

Affiliation:

1. Rochester Institute of Technology, Rochester, NY

Abstract

The development of advanced microchannel heat exchangers and microfluidic devices is dependent upon the understanding of the fundamental heat transfer processes that occur in these systems. Several researchers have reported significant deviation from the classical theory used in macroscale applications, while others have reported general agreement, especially in the laminar region. This fundamental question needs to be addressed in order to generate a set of design equations to predict the heat transfer performance of microchannel flow devices. A database is generated from the available literature to critically evaluate the reported experimental data. An in-depth comparison of previous experimental data is performed to identify the discrepancies in the reported literature. It is concluded that the classical theory is applicable to microchannel and minichannel flows. The literature reporting discrepancies do not account for developing flows, fin efficiency, erros in channel geometry measurements and experimental uncertainties. It is further concluded that if all these factors are accounted for, the available data have good general agreement with macroscale theories. A similar approach is presented for pressure drop in microchannels in an accompanying conference paper, Steinke and Kandlikar (2005).

Publisher

ASMEDC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3