Performance Characteristics of a Membrane Driven Variable Flow Rate Micro-Pump

Author:

Jeong Su-Young1,Thorud Jonathan D.1,Pence Deborah V.1,Liburdy James A.1

Affiliation:

1. Oregon State University, Corvallis, OR

Abstract

A micropump was developed for a fluidic system that requires fluid transport in the 100+ μL/min flow range. The constraints on the design included the ability to control the flow rate over a reasonable range of flow rates, operate at fairly high pressure loads, and non-contact of the working fluid with the pump actuation system. The design was based on a displacement style pump, actuated by a piezoelectric element, with one-way polymer membrane check valves. The valves provided essentially zero backflow based on the elastic character of the material. Results are presented for three membrane thicknesses, three valve opening diameters, over a range of operating frequencies. The flow rate versus frequency curves show a characteristic trend with three regions of operation, the first a linear region at low frequencies, the second a region of decreasing slope resulting in a maximum flow rate regime and the third a region of reduced flow rate with increasing frequency. Results also show that a suction lift could be overcome with the micropump whose value depends on the valve size. The performance is compared to an ideal case indicating that larger diameter valves with thinner membranes obtain the best performance.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3