Stability Analysis of Straight and Buckled Two-Dimensional Channels Conveying an Incompressible Flow

Author:

Matsuzaki Y.1,Fung Y.-C.2

Affiliation:

1. National Aerospace Laboratory, Chofu, Tokyo, Japan

2. Department of Applied Mechanics and Engineering Sciences, University of California at San Diego, La Jolla, Calif.

Abstract

This paper analyzes the stability of a two-dimensional flexible channel of finite length by evaluating the fluid dynamic pressure analytically, and solving a plate equation with the aid of a two-term Galerkin approach. The walls of the channel are collapsible, flat plates supported laterally by a set of uniformly distributed springs and at the ends by pins. The nonlinear relationship between axial and lateral displacement is taken into account in order to examine the behavior of the walls when they deviate from the flat configuration after an onset of aerodynamic buckling or classical buckling due to the fluid force or endshortening, respectively. As the flow is increased from zero the walls become statically unstable at a certain flow speed and start to collapse in the first axial mode when there are no distributed springs. With further increase in flow speed the deflection of the buckled walls increases continuously. The analysis of limit cycle oscillations indicates that no flutter of the flat and buckled walls is predicted when damping exists.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3