Recursive System Identification and Simulation of Model Predictive Control Based on Experimental Data to Control the Cathode Side Parameters of the Hybrid Fuel Cell/Gas Turbine

Author:

Restrepo Bernardo1,Tucker David2,Banta Larry E.3

Affiliation:

1. Department of Mechanical Engineering, Universidad del Turabo, Gurabo 00778-3030, Puerto Rico e-mail:

2. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 e-mail:

3. White Hat Engineering, Morgantown, WV 26508 e-mail:

Abstract

A model predictive control (MPC) strategy has been suggested and simulated with the empirical dynamic data collected on the hybrid performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy, in Morgantown, WV. The excursion dynamic data collected between the setup changes of the actuators on the cathode side of the HyPer facility were processed offline to determine the feasibility of applying an adaptive model predictive control strategy. Bypass valves along with electric load (EL) of the system were manipulated, and variables such as turbine speed, mass flow, temperature, pressure of the cathode side, among others were recorded for analysis. The three main phases of the MPC, identification of the models, control design, and control tuning have been described. Two identification structures, autoregressive exogenous (ARX) and a state-space model, were used to fit the measured data to dynamic models of the facility. The system identification ARX model required around 0.12 s of computer time. The state-space identification algorithm spent around 0.65 s, which was relatively high considering that the sample time of the sensors was 0.4 s. Visual inspection of the tracking accuracy showed that the ARX approach was approximately as accurate as the state-space structure in its ability to reproduce measured data. However, by comparing the loss function and the final prediction error (FPE) parameters, the state-space approach gives better results. For the ARX/state-space models, the MPC was robust in tracking setpoint variations. The MPC strategy described here offers potential to be the way to control the HyPer facility. One of the strengths of MPC is that it can allow the designer to impose strict limits on inputs and outputs in order to keep the system within known safe bounds. Constraints are highly present in the HyPer facility. The constraint airflow valves and the electric load were used in the simulation to control the constraint turbine speed and the cathode airflow (CAF). The MPC also displayed good disturbance rejection on the output variables when the fuel flow was set to simulate fuel cell (FC) heat effluent disturbances. Different off-design scenarios of operation were tested to confirm the estimated implementation behavior of the plant-controller dynamics. One drawback in MPC implementation is the computational time consuming between calculations and will be considered for future studies.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference28 articles.

1. Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid,2005

2. Characterization of Bypass Control Methods in a Coal-Based Fuel Cell Turbine Hybrid,2006

3. Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation,2009

4. A Dynamic Bulk SOFC Model Used in a Hybrid Turbine Controls Test Facility,2006

5. A Transient Model of a Hybrid Fuel Cell/Gas Turbine Test Facility Using Simulink,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3