Affiliation:
1. Department of Mechanical Engineering, Universidad del Turabo, Gurabo 00778-3030, Puerto Rico e-mail:
2. U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 e-mail:
3. White Hat Engineering, Morgantown, WV 26508 e-mail:
Abstract
A model predictive control (MPC) strategy has been suggested and simulated with the empirical dynamic data collected on the hybrid performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy, in Morgantown, WV. The excursion dynamic data collected between the setup changes of the actuators on the cathode side of the HyPer facility were processed offline to determine the feasibility of applying an adaptive model predictive control strategy. Bypass valves along with electric load (EL) of the system were manipulated, and variables such as turbine speed, mass flow, temperature, pressure of the cathode side, among others were recorded for analysis. The three main phases of the MPC, identification of the models, control design, and control tuning have been described. Two identification structures, autoregressive exogenous (ARX) and a state-space model, were used to fit the measured data to dynamic models of the facility. The system identification ARX model required around 0.12 s of computer time. The state-space identification algorithm spent around 0.65 s, which was relatively high considering that the sample time of the sensors was 0.4 s. Visual inspection of the tracking accuracy showed that the ARX approach was approximately as accurate as the state-space structure in its ability to reproduce measured data. However, by comparing the loss function and the final prediction error (FPE) parameters, the state-space approach gives better results. For the ARX/state-space models, the MPC was robust in tracking setpoint variations. The MPC strategy described here offers potential to be the way to control the HyPer facility. One of the strengths of MPC is that it can allow the designer to impose strict limits on inputs and outputs in order to keep the system within known safe bounds. Constraints are highly present in the HyPer facility. The constraint airflow valves and the electric load were used in the simulation to control the constraint turbine speed and the cathode airflow (CAF). The MPC also displayed good disturbance rejection on the output variables when the fuel flow was set to simulate fuel cell (FC) heat effluent disturbances. Different off-design scenarios of operation were tested to confirm the estimated implementation behavior of the plant-controller dynamics. One drawback in MPC implementation is the computational time consuming between calculations and will be considered for future studies.
Subject
Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Reference28 articles.
1. Characterization of Air Flow Management and Control in a Fuel Cell Turbine Hybrid,2005
2. Characterization of Bypass Control Methods in a Coal-Based Fuel Cell Turbine Hybrid,2006
3. Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation,2009
4. A Dynamic Bulk SOFC Model Used in a Hybrid Turbine Controls Test Facility,2006
5. A Transient Model of a Hybrid Fuel Cell/Gas Turbine Test Facility Using Simulink,2005
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献