Numerical Scheme for the Solution of Fractional Differential Equations of Order Greater Than One

Author:

Kumar Pankaj1,Agrawal Om P.1

Affiliation:

1. Mechanical Engineering and Energy Processes, Southern Illinois University, Carbondale, Illinois 62901

Abstract

This paper presents a numerical scheme for the solutions of Fractional Differential Equations (FDEs) of order α, 1<α<2 which have been expressed in terms of Caputo Fractional Derivative (FD). In this scheme, the properties of the Caputo derivative are used to reduce an FDE into a Volterra-type integral equation. The entire domain is divided into several small domains, and the distribution of the unknown function over the domain is expressed in terms of the function values and its slopes at the node points. These approximations are then substituted into the Volterra-type integral equation to reduce it to algebraic equations. Since the method enforces the continuity of variables at the node points, it provides a solution that is continuous and with a slope that is also continuous over the entire domain. The method is used to solve two problems, linear and nonlinear, using two different types of polynomials, cubic order and fractional order. Results obtained using both types of polynomials agree well with the analytical results for problem 1 and the numerical results obtained using another scheme for problem 2. However, the fractional order polynomials give more accurate results than the cubic order polynomials do. This suggests that for the numerical solutions of FDEs fractional order polynomials may be more suitable than the integer order polynomials. A series of numerical studies suggests that the algorithm is stable.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference17 articles.

1. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations;Diethelm;Nonlinear Dyn.

2. Algorithms for that Fractional Calculus: A Selection of Numerical Methods;Diethelm;Comput. Methods Appl. Mech. Eng.

3. A Cubic Scheme for Numerical Solution of Fractional Differential Equations;Kumar

4. Analysis of Fractional Differential Equations;Diethelm;J. Math. Anal. Appl.

5. The Numerical Solution of Linear Multiterm Fractional Differential Equations: Systems of Equations;Edwards;J. Comput. Appl. Math.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3