A Theoretical Model to Predict the Vibration Response of Rolling Bearings in a Rotor Bearing System to Distributed Defects Under Radial Load

Author:

Tandon N.1,Choudhury A.2

Affiliation:

1. ITMME Center Indian Institute of Technology, Hauz Khas, New Delhi 110016, India

2. Mechanical Engineering Department, Regional Engineering College, Silchar 788010, India

Abstract

A theoretical model to predict the vibration response of rolling element bearing in a rotor bearing system to distributed defects under radial load has been developed. The rotor bearing system has been considered as a three degrees of freedom model. The distributed defects considered are, the waviness of outer and inner races, and off size rolling element. The model predicts discrete spectrum with specific frequency components for each order of waviness. For outer race waviness, the spectrum has components at outer race defect frequency and its harmonics. In the case of inner race waviness, the waviness orders equal to number of rolling elements and its multiples give rise to spectral components at inner race defect frequency and its multiples. Other orders of waviness generate sidebands at multiples of shaft frequency about these peaks. The model predicts the amplitudes of the spectral components due to outer race waviness to be much higher as compared to those due to inner race waviness. In the case of an off-size rolling element, the model predicts discrete spectra having significant components at multiples of cage frequency. [S0742-4787(00)00603-2]

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3