On a Simplified Model for Numerical Simulation of Wear During Dry Rolling Contacts

Author:

Chevalier L.1,Eddhahak-Ouni A.2,Cloupet S.3

Affiliation:

1. Laboratoire MSME, Université Paris-Est, 5 Boulevard Descartes, Champs sur Marne, 77454 Marne la Vallée, Cedex 2, France

2. CRCHM, Université Paris, 12 Val de Marne, 8 rue du Général Sarrail, 94010 Créteil, France

3. ISTIA–LASQUO, 62 Avenue Notre Dame du Lac, 49000 Angers, France

Abstract

We deal with rolling contact between quasi-identical bodies. As normal and tangential problems are uncoupled in that case, the simplified approach to determine contact area and normal loading distribution for rolling contact problems is presented in Sec. 2. In Sec. 3, the solution of the tangential problem is used to update the rolling profiles and enables to follow the wear evolution versus time. The method used to solve the normal problem is called semi-Hertzian approach with diffusion. It allows fast determination of the contact area for non-Hertzian cases. The method is based on the geometrical indentation of bodies in contact: The contact area is found with correct dimensions but affected by some irregularities coming from the curvature’s discontinuity that may arise during a wear process. Diffusion between independent stripes smoothes the contact area and the pressure distribution. The tangential problem is also solved on each stripe of the contact area using an extension of the simplified approach developed by Kalker and called FASTSIM. At the end, this approach gives the dissipated power distribution in the contact during rolling and this power is related to wear by Archard’s law. This enables the profiles of the bodies to be updated and the evolution of the geometry to be followed.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3