A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations

Author:

Dwivedi Vikas1,Srinivasan Balaji1

Affiliation:

1. Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India

Abstract

Abstract This paper develops an extreme learning machine for solving linear partial differential equations (PDEs) by extending the normal equations approach for linear regression. The normal equations method is typically used when the amount of available data is small. In PDEs, the only available ground truths are the boundary and initial conditions (BC and IC). We use the physics-based cost function use in state-of-the-art deep neural network-based PDE solvers called physics-informed neural network (PINN) to compensate for the small data. However, unlike PINN, we derive the normal equations for PDEs and directly solve them to compute the network parameters. We demonstrate our method’s feasibility and efficiency by solving several problems like function approximation, solving ordinary differential equations (ODEs), and steady and unsteady PDEs on regular and complicated geometries. We also highlight our method’s limitation in capturing sharp gradients and propose its domain distributed version to overcome this issue. We show that this approach is much faster than traditional gradient descent-based approaches and offers an alternative to conventional numerical methods in solving PDEs in complicated geometries.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3