Affiliation:
1. SoftInWay, Inc. , Burlington, MA 01803
Abstract
Abstract
The paper describes the study performed by SoftInWay in the scope of the Phase I SBIR project funded by the National Aeronautics and Space Administration (NASA). The project was dedicated to a study of optimization of the variable geometry reset angle schedules with the use of innovative autonomous artificial intelligence (AI) technology. In the scope of the project, an automated compressor performance data generation workflow was developed. Three highly loaded multistage axial compressors were designed. The developed workflow was used to generate the training, validation, and test data sets for all three compressors. Multiple different architectures of artificial neural networks were studied, and parametric models for the representation of performance speedlines were developed. Utilizing the developed approaches, artificial neural networks were trained for all three compressors to predict their performance with a relative error below 3%. The trained neural networks were successfully used in the optimization of the variable inlet guide vanes and variable stator vanes reset angle schedules with a relative error of total-to-total pressure ratio prediction below 2% for most of the points and relative error of total-to-total efficiency prediction below 1% for all the points of the operational line. The capability of the developed AI models to accurately predict the optimal combination of reset angles and efficiency of the axial compressor with multiple vanes controlled independently allowed doing quick evaluations of efficiency and stability margins. The availability of such information enables the opportunity to make technical-economical decisions about the reasonability of implementation of independent variable vanes and their number during engine system analysis.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference13 articles.
1. Extended Parametric Representation of Compressors Fans and Turbines,1984
2. Performance Prediction of the Centrifugal Compressor Based on a Limited Number of Sample Data;Math. Probl. Eng.,2019
3. Compressor Map Generation Using a Feed-Forward Neural Network and Rig Data;Proc. Inst. Mech. Eng., Part A,2010
4. Compressor Performance Prediction Using a Novel Feed-Forward Neural Network Based on Gaussian Kernel;Adv. Mech. Eng.,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献