Axial Compressor Map Generation Leveraging Autonomous Self-Training Artificial Intelligence

Author:

Burlaka Maksym1,Moroz Leonid1

Affiliation:

1. SoftInWay, Inc. , Burlington, MA 01803

Abstract

Abstract The paper describes the study performed by SoftInWay in the scope of the Phase I SBIR project funded by the National Aeronautics and Space Administration (NASA). The project was dedicated to a study of optimization of the variable geometry reset angle schedules with the use of innovative autonomous artificial intelligence (AI) technology. In the scope of the project, an automated compressor performance data generation workflow was developed. Three highly loaded multistage axial compressors were designed. The developed workflow was used to generate the training, validation, and test data sets for all three compressors. Multiple different architectures of artificial neural networks were studied, and parametric models for the representation of performance speedlines were developed. Utilizing the developed approaches, artificial neural networks were trained for all three compressors to predict their performance with a relative error below 3%. The trained neural networks were successfully used in the optimization of the variable inlet guide vanes and variable stator vanes reset angle schedules with a relative error of total-to-total pressure ratio prediction below 2% for most of the points and relative error of total-to-total efficiency prediction below 1% for all the points of the operational line. The capability of the developed AI models to accurately predict the optimal combination of reset angles and efficiency of the axial compressor with multiple vanes controlled independently allowed doing quick evaluations of efficiency and stability margins. The availability of such information enables the opportunity to make technical-economical decisions about the reasonability of implementation of independent variable vanes and their number during engine system analysis.

Funder

Stennis Space Center

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference13 articles.

1. Extended Parametric Representation of Compressors Fans and Turbines,1984

2. Performance Prediction of the Centrifugal Compressor Based on a Limited Number of Sample Data;Math. Probl. Eng.,2019

3. Compressor Map Generation Using a Feed-Forward Neural Network and Rig Data;Proc. Inst. Mech. Eng., Part A,2010

4. Compressor Performance Prediction Using a Novel Feed-Forward Neural Network Based on Gaussian Kernel;Adv. Mech. Eng.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3