Quantification of Vibration Localization in Periodic Structures

Author:

Chandrashaker A.1,Adhikari S.2,Friswell M. I.1

Affiliation:

1. College of Engineering, Swansea University, Swansea SA1 8EN, UK

2. College of Engineering, Swansea University, Swansea SA1 8EN, UK e-mail:

Abstract

The phenomenon of vibration mode localization in periodic and near periodic structures has been well documented over the past four decades. In spite of its long history, and presence in a wide range of engineering structures, the approach to detect mode localization remains rather rudimentary in nature. The primary way is via a visual inspection of the mode shapes. For systems with complex geometry, the judgment of mode localization can become subjective as it would depend on visual ability and interpretation of the analyst. This paper suggests a numerical approach using the modal data to quantify mode localization by utilizing the modal assurance criterion (MAC) across all the modes due to changes in some system parameters. The proposed MAC localization factor (MACLF) gives a value between 0 and 1 and therefore gives an explicit value for the degree of mode localization. First-order sensitivity based approaches are proposed to reduce the computational effort. A two-degree-of-freedom system is first used to demonstrate the applicability of the proposed approach. The finite element method (FEM) was used to study two progressively complex systems, namely, a coupled two-cantilever beam system and an idealized turbine blade. Modal data is corrupted by random noise to simulate robustness when applying the MACLF to experimental data to quantify the degree of localization. Extensive numerical results have been given to illustrate the applicability of the proposed approach.

Publisher

ASME International

Subject

General Engineering

Reference35 articles.

1. Mitigation of Wind Induced Vibration of Arctic Pipeline Systems,1992

2. Modeling and Analysis of Mistuned Bladed Disk Vibration: Status and Emerging Directions;J. Propul. Power,2006

3. New Insights into the Blade Mistuning Problem,2006

4. Robust Strategies for Forced Response Reduction of Bladed Disks Based on Large Mistuning Concept;ASME J. Eng. Gas Turbines Power,2008

5. A Design Strategy for Preventing High Cycle Fatigue by Minimising Sensitivity of Bladed Disks to Mistuning,1997

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3