Effects of Acoustic Excitation on a Swirling Diffusion Flame

Author:

Loretero Michael E.1,Huang Rong F.1

Affiliation:

1. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10672, Taiwan, R.O.C.

Abstract

A swirling double concentric jet is commonly used for nonpremixed gas burner application for safety reasons and to improve the combustion performance. Fuel is generally spurted at the central jet while the annular coflowing air is swirled. They are normally separated by a blockage disk where the bluff-body effects further enhance the recirculation of hot gas at the reaction zone. This paper aims to experimentally investigate the behavior of flame and flow in a double concentric jet combustor when the fuel supply is acoustically driven. Laser-light sheet assisted Mie scattering method has been used to visualize the flow, while the flame lengths were measured by a conventional photography technique. The fluctuating velocity at the jet exit was measured by a two-component laser Doppler velocimeter. Flammability and stability at first fuel tube resonant frequency are reported and discussed. The evolution of flame profile with excitation level is presented and discussed, together with the reduction in flame length. The flame in the unforced reacting axisymmetric wake is classified into three characteristic modes, which are weak swirling flame, lifted flame, and transitional reattached flame. These terms reflect their primary features of flame appearances, and when the acoustic excitation is applied, the flame behaviors change with the excitation frequency and amplitude. Four additional characteristic modes are identified; e.g., at low excitation amplitudes, wrinkling flame with a blue annular film is observed because the excitation induces vortices in the central fuel jet and hence gives rise to the wrinkling of flame. The central jet vortices become larger with the increase in excitation amplitude and thus lead to a wider and shorter flame. If the excitation amplitude is increased above a certain value, the central jet vortices change the rotation direction and pacing with the annular jet vortices. These changes in the flow field induce large turbulent intensity and mixing and therefore make the flame looks blue and short. Further increase in the excitation amplitude would lift the flame because the flow field would be dramatically modified.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3