Finite-Time Tracker Design for Uncertain Nonlinear Fractional-Order Systems

Author:

Binazadeh Tahereh1

Affiliation:

1. Assistant Professor Department of Electrical and Electronic Engineering, Shiraz University of Technology, Modares Boulevard, P.O. Box 71555-313 Shiraz, Iran e-mail:

Abstract

This paper considers the problem of finite-time output tracking for a class of nonautonomous nonlinear fractional-order (FO) systems in the presence of model uncertainties and external disturbances. The finite-time control methods indicate better properties in terms of robustness, disturbance rejection, and settling time. Thus, design of a robust nonsingular controller for finite-time output tracking of a time-varying reference signal is considered in this paper, and a novel FO nonsingular terminal sliding mode controller (TSMC) is designed, which can conquer the uncertainties and guarantees the finite-time convergence of the system output toward the desired time-varying reference signal. For this purpose, an appropriate nonsingular terminal sliding manifold is designed, where maintaining the system's states on this manifold leads to finite-time vanishing of error signal (i.e., ensures the finite-time occurrence of both reaching and sliding phases). Moreover, by tacking the fractional derivative of the sliding manifold, the convergence of system's trajectories into the terminal sliding manifold in a finite time is proven, and the convergence time is estimated. Finally, in order to verify the theoretical results, the proposed method is applied to an FO model of a horizontal platform system (FO-HPS), and the computer simulations show the efficiency of the proposed method in finite-time output tracking.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference26 articles.

1. Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators;IEEE Trans. Autom. Control,1998

2. Stabilization of Uncertain Chained Form Systems Within Finite Settling Time;IEEE Trans. Autom. Control,2005

3. Polyakov, A., Efimov, D., and Perruquetti, W., 2013, “Finite-Time Stabilization Using Implicit Lyapunov Function Technique,” 9th Symposium on Nonlinear Control Systems, Toulouse, France.https://hal.inria.fr/hal-00844386/

4. An Overview of Finite-Time Stability,2006

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3