Two-Dimensional Numerical Analysis of Non-Darcy Flow Using the Lattice Boltzmann Method: Pore-Scale Heterogeneous Effects

Author:

Takeuchi Yuto1,Takeuchi Junichiro1,Izumi Tomoki2,Fujihara Masayuki1

Affiliation:

1. Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

2. Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan

Abstract

Abstract This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.

Funder

Japan Society for the Promotion of Science

Publisher

ASME International

Subject

Mechanical Engineering

Reference44 articles.

1. Wasserbewegung Durch Boden;Z. Ver. Deutsch, Ing.,1901

2. Fluid Flow Through Packed Columns;Chem. Eng. Prog.,1952

3. Takhanov, D., 2011, “ Forchheimer Model for Non-Darcy Flow in Porous Media and Fractures,” Master's thesis, Imperial College London, London, UK.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3