Excitation of Shear Layer Due to Surface Roughness Near the Leading Edge: An Experiment

Author:

Singh Pradeep1,Sarkar S.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

Abstract

Abstract In this paper, a comprehensive study has been performed to address the excitation of a separated boundary layer near the leading edge due to surface roughness. Experiments are performed on a model airfoil with the semicircular leading edge at a Reynolds number (Rec) of 1.6×105, where the freestream turbulence (fst) is 1.2%. The flow features are investigated over the three rough surfaces with the roughness characteristic in the wall unit of 17, 10.5, and 8.4, which are estimated from the velocity profile at a location far downstream of reattachment. The wall roughness results in an early transition and reattachment, leading to a reduction of the laminar shear layer length apart from the bubble length. It is worthwhile to note that although the large-amplitude pretransitional perturbations are apparent from the beginning for the rough surface, the shear layer reflects the amplification of selected frequencies, where the fundamental frequency when normalized is almost the same as that of the smooth wall. The universal intermittency curve can be used to describe the transition of the shear layer, which exhibits some resemblance to the excitation of the boundary layer under fst, signifying the viscous effect.

Publisher

ASME International

Subject

Mechanical Engineering

Reference61 articles.

1. Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers;J. Fluid Mech.,1986

2. Rough-Wall Turbulent Boundary Layers;ASME Appl. Mech. Rev.,1991

3. Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers;J. Fluid Mech.,1992

4. Turbulent Flows Over Rough Walls;Annu. Rev. Fluid Mech.,2004

5. Surface Roughness Effects on Turbulent Boundary Layer Structures;ASME J. Fluids Eng.,2002

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3