Spectral Numerical Study of Entropy Generation in Magneto-Convective Viscoelastic Biofluid Flow Through Poro-Elastic Media With Thermal Radiation and Buoyancy Effects

Author:

Mallikarjuna B.1,Srinivas J.2,Krishna G. Gopi3,Bég O. Anwar4,Kadir Ali4

Affiliation:

1. Department of Mathematics, BMS College of Engineering, Bangalore 560019, Karnataka, India

2. Department of Mathematics, National Institute of Technology, Warangal 506004, Telangana, India

3. Department of Mathematics, MLRITM, Dundigal 500043, Telangana, India

4. Multi-Physical Engineering Sciences, Department of Aeronautical and Mechanical Engineering, School of Computing, Science and Engineering, Newton Building, The Crescent, Salford M54WT, UK

Abstract

Abstract Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases including tissue damage ablation repair, hyperthermia, and oncological illness diagnosis. The simulation of transport phenomena in such applications requires multi-physical models featuring magnetohydrodynamics, biorheology, heat transfer, and deformable porous media. Motivated by investigating the fluid dynamics and thermodynamic optimization of such processes, in the present article, a mathematical model is developed to study the combined influence of thermal buoyancy, magnetic field and thermal radiation on the entropy generation, and momentum and heat transfer characteristics in electrically conducting viscoelastic biofluid flow through a vertical deformable porous medium. It is assumed that heat is generated within the fluid by both viscous and Darcy (porous matrix) dissipations. The governing equations for fluid velocity, solid displacement, and temperature are formulated. The boundary value problem is normalized with appropriate transformations. The nondimensional biofluid velocity, solid displacement, and temperature equations with appropriate boundary conditions are solved computationally using a spectral method. Verification of accuracy is conducted via monitoring residuals of the solutions. The effects of various parameters on flow velocity, solid displacement, temperature, and entropy generation are depicted graphically and discussed. Increasing magnetic field and drag parameters are found to reduce the field velocity, solid displacement, temperature, and entropy production. Entropy production is enhanced with an increase in buoyancy parameter and volume fraction of the fluid. The novelty of the work is the simultaneous inclusion of multiple thermophysical phenomena, and the consideration of thermodynamic optimization in coupled thermal/fluid/elastic media. The computations provide an insight into multiphysical transport in electromagnetic radiative tissue ablation therapy and a good benchmark for more advanced simulations.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3