Measurement of Liquid Slip on Nanoturf Surfaces

Author:

Choi Chang-Hwan1,Kim Chang-Jin1

Affiliation:

1. University of California at Los Angeles, Los Angeles, CA

Abstract

While many new studies have confirmed the existence of liquid slip over certain solid surfaces [1], there has not been a deliberate effort to design and fabricate a surface that will maximize the slip effect and reduce drag in liquid flow in practical conditions. Hydrophobic rough surfaces have been studied experimentally to reduce the friction in liquid flow [2, 3]. The fine grooves [2], trapping air in them, were speculated to decrease the liquid-solid contact area and contribute to the drag reduction. However, the grooves constitute only a fraction of the entire surface and the rest of the surface is also rough, making it difficult to isolate and attribute the effect of the air layer. Although the post structures with large pitches (i.e., over several microns) [3] may be convenient to fabricate and more convincing to demonstrate the drag reduction, they function only under small liquid pressure (e.g., < 5000 Pa), which does not represent most real flow conditions. Although the nano-patterned surfaces have recently been shown to reduce the friction even under high pressure [4, 5], the amount of slip is not large enough to generate a meaningful drag reduction. Hence, our goal, extended from the previous report for droplet flows [6], is to engineer a surface that maximizes the slip effect for continuous flows in real engineering cases when the liquid is considerably pressurized.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3