An Inexpensive, Portable Machine to Facilitate Testing and Characterization of the Friction Stir Blind Riveting Process

Author:

Zachary Trimble A1,Yammamoto Brennan2,Li Jingjing2

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, University of Hawaii, Holmes Hall 302, 2540 Dole Street, Honolulu, HI 96822 e-mail:

2. Department of Mechanical Engineering, University of Hawaii, Holmes Hall 302, 2540 Dole Street, Honolulu, HI 96822 e-mail:

Abstract

The expanding use of materials that are difficult to join with traditional techniques drives an urgent need, in a wide array of industries, to develop and characterize production capable joining processes. Friction stir blind riveting (FSBR) is such a process. However, full adoption of FSBR requires more complete characterization of the process. The relatively inexpensive, portable FSBR machine discussed here facilitates in situ X-ray imaging of the FSBR process, which will enhance the ability of researchers to understand and improve the FSBR process. Real-time, unobstructed, angular X-ray access drives the functional requirements and design considerations of the machine. The acute angular access provided by the machine necessitates tradeoffs in stiffness and Abbe errors. An error budget quantifies the effect of the various trade-offs on likely sensitive directions and relationships. Additionally, the machine motivates more test parameters important to machine designers (e.g., parallelism and runout) that have not yet been explored in the literature. Ultimately, a machine has been developed, which has a single rotational axis that translates parallel to the rotational axis, can be built for under $12,000, has a mass of less than 110 kg, measures 915 mm × 254 mm × 624 mm, has a rotational speed range of 400–8000 RPM, has a feed rate range of 0.1–200 mm/min, can be installed on most test benches, has total rivet runout of 0.1 mm, has plunge and rotational axis parallelism of less than 0.1 deg, and has a plunge axis repeatability of better than 2  μ m over a 10 mm range.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3