STL-Free Adaptive Slicing Scheme for Additive Manufacturing of Cellular Materials

Author:

Rastegarzadeh Sina1,Huang Jida2

Affiliation:

1. 842 W. Taylor St. Chicago, IL 60607

2. 842 W. Taylor Street Chicago, IL 60607

Abstract

Abstract In recent years, advances in additive manufacturing (AM) techniques have called for a scalable fabrication framework for high-resolution designs. Despite several process-specific handful design approaches, there is a gap to fill between computer-aided design (CAD) and the manufacturing of highly detailed multi-scale materials, especially for delicate cellular materials design. This gap ought to be filled with an avenue capable of efficiently slicing multi-scale intricate designs. Most existing methods depend on the mesh representation, which is time-consuming and memory-hogging to generate. This paper proposes an adaptive direct slicing (mesh-free) pipeline that exploits the function representation (FRep) for hierarchical architected cellular materials design. To explore the capabilities of the presented approach, several sample structures with delicate architectures are fabricated using a stereolithography (SLA) printer. The computational efficiency of the proposed slicing algorithm is studied. Furthermore, the geometry frustration problem brought by the connection of distinct structures between functionally graded unit cells at the micro-scale level is also investigated.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3