Combined Heat and Mass Transfer by Natural Convection in a Vertical Enclosure

Author:

Trevisan O. V.1,Bejan A.1

Affiliation:

1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706

Abstract

The phenomenon of natural convection caused by combined temperature and concentration buoyancy effects is studied analytically and numerically in a rectangular slot with uniform heat and mass fluxes along the vertical sides. The analytical part is devoted to the boundary layer regime where the heat and mass transfer rates are ruled by convection. An Oseen-linearized solution is reported for tall spaces filled with mixtures characterized by Le = 1 and arbitrary buoyancy ratios. The effect of varying the Lewis number is documented by a similarity solution valid for Le >1 in heat-transfer-driven flows, and for Le <1 in mass-transfer-driven flows. The analytical results are validated by numerical experiments conducted in the range 1≤H/L≤4, 3.5×105≤Ra≤7×106, −11≤n≤9, 1≤Le≤40, and Pr=0.7, 7. “Massline” patterns are used to visualize the convective mass transfer path and the flow reversal observed when the buoyancy ratio n passes through the value −1.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3