Affiliation:
1. Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27706
Abstract
The phenomenon of natural convection caused by combined temperature and concentration buoyancy effects is studied analytically and numerically in a rectangular slot with uniform heat and mass fluxes along the vertical sides. The analytical part is devoted to the boundary layer regime where the heat and mass transfer rates are ruled by convection. An Oseen-linearized solution is reported for tall spaces filled with mixtures characterized by Le = 1 and arbitrary buoyancy ratios. The effect of varying the Lewis number is documented by a similarity solution valid for Le >1 in heat-transfer-driven flows, and for Le <1 in mass-transfer-driven flows. The analytical results are validated by numerical experiments conducted in the range 1≤H/L≤4, 3.5×105≤Ra≤7×106, −11≤n≤9, 1≤Le≤40, and Pr=0.7, 7. “Massline” patterns are used to visualize the convective mass transfer path and the flow reversal observed when the buoyancy ratio n passes through the value −1.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
155 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献