A Study of the Relationship Between Free-Stream Turbulence and Stagnation Region Heat Transfer

Author:

VanFossen G. J.1,Simoneau R. J.1

Affiliation:

1. NASA Lewis Research Center, Cleveland, OH 44135

Abstract

A study has been conducted at the NASA Lewis Research Center to investigate the mechanism that causes free-stream turbulence to increase heat transfer in the stagnation region of turbine vanes and blades. The work was conducted in a wind tunnel at atmospheric conditions to facilitate measurements of turbulence and heat transfer. The model size was scaled up to simulate Reynolds numbers (based on leading edge diameter) that are to be expected on a turbine blade leading edge. Reynolds numbers from 13,000 to 177,000 were run in the present tests. Spanwise averaged heat transfer measurements with high and low turbulence have been made with “rough” and smooth surface stagnation regions. Results of these measurements show that, at the Reynolds numbers tested, the boundary layer remained laminar in character even in the presence of free-stream turbulence. If roughness was added the boundary layer became transitional as evidenced by the heat transfer increase with increasing distance from the stagnation line. Hot-wire measurements near the stagnation region downstream of an array of parallel wires has shown that vorticity in the form of mean velocity gradients is amplified as flow approaches the stagnation region. Finally smoke wire flow visualization and liquid crystal surface heat transfer visualization were combined to show that, in the wake of an array of parallel wires, heat transfer was a minimum in the wire wakes where the fluctuating component of velocity (local turbulence) was the highest. Heat transfer was found to be the highest between pairs of vortices where the induced velocity was toward the cylinder surface.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3