Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application

Author:

Filiz Sinan1,Ozdoganlar O. Burak1

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

This paper presents a study to validate the microendmill dynamics model derived in Part I. A laser Doppler vibrometer system that is coupled with a microscope is used to measure the natural frequencies and mode shapes of nonrotating microendmills with different geometries. Free-free boundary conditions are obtained by suspending the microendmills using elastic bands. The dynamic excitation is delivered through miniature piezoelectric elements attached to the microendmill shanks. In each case, the model is compared to experimental results and solid-element finite-element (FE) models. To evaluate the model in the presence of rotational effects, the model is compared to an FE model. In most cases, the model was seen to capture the dynamic behavior of microendmills accurately. The validated model is used to investigate the effects of microendmill geometry, and radial and tilt runouts on the modal behavior of microendmills. Furthermore, possible geometric simplifications to fluted region are evaluated based on the accuracy of the predicted natural frequencies of the microendmills.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of automated impact system for modal analysis of micro-end mill;Manufacturing Letters;2023-08

2. A review on dynamics in micro-milling;The International Journal of Advanced Manufacturing Technology;2022-09-16

3. Chatter stability analysis in Micro-milling with aerostatic spindle considering speed effect;Mechanical Systems and Signal Processing;2022-04

4. Dynamics of Miniature and High-Compliance Structures: Experimental Characterization and Modeling;Experimental Mechanics;2021-10-19

5. Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review;Journal of Manufacturing Science and Engineering;2020-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3