Nondestructive Evaluation of Thermally Shocked Silicon Carbide by Impact-Acoustic Resonance

Author:

Bemis R. A.1,Shiloh K.2,Ellingson W. A.3

Affiliation:

1. Caterpillar, Inc., Peoria, IL 60482

2. Soreq Nuclear Research Center, Yavne, Israel

3. Argonne National Laboratory, Argonne, IL 60439

Abstract

Monolithic ceramics are under consideration as structural components for hot-stage sections of gas-fired turbine engines. In addition to manufacturing quality control, other important aspects for this application include life prediction modeling and time between engine overhauls. One nondestructive evaluation (NDE) method that provides information about material condition involves an analysis of resonant vibrations. In previous work by this general approach, changes in modal parameters have been related to bulk defect mechanisms such as microcracking due to thermal shock damage. In this work resonant vibrations from monolithic ceramic specimens were excited by an instrumented impact hammer and detected by a noncontact acoustic microphone over frequencies up to 100 kHz. Computer-based analysis of vibration signatures from test specimens allowed extraction of modal frequencies and damping constants. Downward shifts in detected resonant frequencies and increases in internal friction or (specific) damping capacity measurements were obtained from SiC cylindrical rings, and these measurements were shown to relate to thermal shock severity. This NDE method not only provides measurable parameters that could be used as accept–reject criteria for in-line process inspection, it also provides a means for tracking the mechanical integrity of in-service engine components to support life prediction modeling.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3