Modes of Adiabatic and Diabatic Fluid Flow in an Annulus With an Inner Rotating Cylinder

Author:

Kaye Joseph1,Elgar E. C.2

Affiliation:

1. Research Laboratory of Heat Transfer in Electronics, Massachusetts Institute of Technology, Cambridge, Mass.

2. Canadian General Electric Company, Toronto, Canada

Abstract

Abstract The present report is the first phase of an investigation of those variables which control the rate of heat transfer in the air gap of a rotating electrical machine. This phase of the problem reduces to obtaining a basic understanding of the fluid-flow and heat-flow processes in an annulus, formed by two concentric cylinders, with the inner cylinder rotating and with the outer cylinder stationary. The primary independent variables and effects are, first, the axial velocity of the air through the air gap, which is combined with other variables to form the customary Reynolds number; second, the speed of rotation, which is combined with other variables to form a new dimensionless group, called the Taylor number, in honor of G. I. Taylor, who laid the theoretical and experimental foundations for this problem; third, the temperature gradients at the walls; fourth, the surface roughness in the air gap; and finally, the “entrance effects” introduced by the development of the boundary-layer flow in the air gap. The present report gives the experimental results obtained for two smooth and long annuli, thereby eliminating from consideration, at present, the last two effects given above. It is shown that four distinct modes of flow exist for adiabatic and diabatic flow of air in these annuli. The demarcation lines of these flow regions were investigated in detail for adiabatic flow with hot-wire anemometers and also by means of visual and photographic methods. The results showed that four modes of flow exist over regions of Reynolds number and Taylor number for both adiabatic and diabatic flow. These modes are: 1 purely laminar flow; 2 laminar flow plus Taylor vortexes; 3 purely turbulent flow; 4 turbulent flow plus vortexes. The results obtained here for adiabatic flow were found to agree well with the work of Cornish for the boundary line between the regions of laminar flow and laminar-plus-vortexes flow, but they did not agree with similar results by Fage. Preliminary results are also presented here for diabatic flow in the annulus in the form of heat-transfer coefficients. These results are shown in the form of a three-dimensional surface in which the Nusselt number is represented as a function of the Reynolds number and Taylor number.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3