Diesel Engine Acoustic Emission Airflow Clogging Diagnostics With Machine Learning

Author:

Cowart Jim1,Moore Patrick1,Yosten Harrison1,Hamilton Leonard1,Prak Dianne Luning1

Affiliation:

1. U.S. Naval Academy, Annapolis, MD 21402 e-mail:

Abstract

A diesel engine electrical generator set (“gen-set”) was instrumented with in-cylinder indicating sensors as well as acoustic emission microphones near the engine. Air filter clogging was emulated by progressive restriction of the engine's inlet air flow path during which comprehensive engine and acoustic data were collected. Fast Fourier transforms (FFTs) were analyzed on the acoustic data. Dominant FFT peaks were then applied to supervised machine learning neural network analysis with matlab-based tools. The progressive detection of the air path clogging was audibly determined with correlation coefficients greater than 95% on test data sets for various FFT minimum intensity thresholds. Further, unsupervised machine learning self-organizing maps (SOMs) were produced during normal-baseline operation of the engine. The degrading air flow engine sound data were then applied to the normal-baseline operation SOM. The quantization error (QE) of the degraded engine data showed clear statistical differentiation from the normal operation data map. This unsupervised SOM-based approach does not know the engine degradation behavior in advance, yet shows clear promise as a method to monitor and detect changing engine operation. Companion in-cylinder combustion data additionally shows the degrading nature of the engine's combustion with progressive airflow restriction (richer and lower density combustion).

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3