Detached-Eddy Simulation of High Reynolds Number Beveled-Trailing-Edge Flows and Wakes

Author:

Paterson Eric G.1,Peltier Leonard J.1

Affiliation:

1. Pennsylvania State University, State College, PA

Abstract

Flow over three different trailing-edge geometries is studied using incompressible detached-eddy simulation and unsteady Reynolds-averaged Navier Stokes CFD methods. Of interest is the ability of DES, coupled with localized overset–grid refinement, to resolve the proper physics of separated flows from trailing edges—trailing-edge turbulence and vortex shedding, in particular. The DES model is shown to provide a good qualitative description of the trailing-edge flow. However, the modeled separations are overly energetic due to premature separation related to artificially low turbulence levels from upstream. The transition from RANS to DES is isolated as an issue. The simulated physics of the wake are shown to be in agreement with other LES studies: the model produces the “rib/roller” structures representing the first instability modes, horseshoe vortices are observed, and in regions of high resolution, small scales are formed, as expected. The turbulence statistics are qualitatively similar to benchmark data near the trailing edge and in the near wake, however, quantitative comparisons of urms show an over prediction in magnitude of 50–100%. Despite this, the results are promising, and future modeling efforts have been motivated and identified.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3