Computational Analyses of Cavitating Control Elements in Cryogenic Environments

Author:

Ahuja V.1,Hosangadi A.1,Shipman J.1

Affiliation:

1. Combustion Research and Flow Technology, Inc., Pipersville, PA

Abstract

The safe and reliable operation of high pressure test stands for rocket engine and component testing places an increased emphasis on the performance of control valves and flow metering devices. In this paper, we present high fidelity computational analyses of cavitating venturi-type cryogenic control valves used to support rocket engine and component testing. The computational analyses are carried out with a generalized multi-phase formulation for cavitation in fluids operating in regimes where thermodynamic effects become important. The thermal effects and the accompanying property variations due to phase change are modeled rigorously. Thermal equilibrium is assumed and fluid thermodynamic properties are specified along the saturation line using the NIST-12 databank. The thermodynamic cavitation framework has been validated against experimental data of Hord [1] for hydrofoils operating in liquid nitrogen and liquid hydrogen. In this paper, we will discuss performance losses related to cryogenic control valves and provide insight into the physics of the dominant multi-phase fluid transport phenomena that are responsible for the choking like behavior of cryogenic control elements.

Publisher

ASMEDC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational fluid dynamic study on cavitation in liquid nitrogen;Cryogenics;2008-09

2. Simulations of Valve Motion Problems for Rocket Engine Test Facilities;43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2007-07-08

3. Simulations of Instabilities in Complex Valve and Feed Systems;42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2006-07-09

4. Analyses of Transient Events in Complex Valve and Feed Systems;41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2005-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3