Production of Hydrogen With Low Carbon Monoxide Formation Via Catalytic Steam Reforming of Methanol

Author:

Patel Sanjay1,Pant K. K.1

Affiliation:

1. Department of Chemical Engineering, Indian Institute of Technology-Delhi, Hauz-Khas, New Delhi-110016, India

Abstract

The production of hydrogen was investigated in a fixed bed tubular reactor via steam reforming of methanol (SRM) using CuO∕ZnO∕Al2O3 catalysts prepared by wet impregnation method and characterized by measuring surface area, pore volume, x-ray diffraction patterns, and scanning electron microscopy photographs. The SRM was carried out at atmospheric pressure, temperature 493-573K, steam to methanol molar ratio 1–1.8 and contact-time (W/F) 3–15kg cat./(mol/s of methanol). Effects of reaction temperature, contact-time, steam to methanol molar ratio and zinc content of the catalyst on methanol conversion, selectivity, and product yields was evaluated. The addition of zinc enhanced the methanol conversion and hydrogen production. The excess steam promoted the methanol conversion and suppressed the carbon monoxide formation. Different strategies have been mentioned to minimize the carbon monoxide formation for the steam reforming of methanol to produce polymer electrolyte membrane (PEM) fuel cell grade hydrogen. Optimum operating conditions with appropriate composition of catalyst has been investigated to produce more selective hydrogen with minimum carbon monoxide. The experimental results were fitted well with the kinetic model available in literature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3