Control-Oriented Modeling of the Dynamics of Stirling Engine Regenerators

Author:

Craun Mitchel1,Bamieh Bassam1

Affiliation:

1. Department of Mechanical Engineering, University of California—Santa Barbara, Santa Barbara, CA 93106 e-mail:

Abstract

We develop a first-principles model of the regenerator component of a generic Stirling engine. The model is based on the Euler equations of one-dimensional gas dynamics coupled with its convective/conductive heat transfer with the embedded mesh material. We investigate various methods for deriving simpler and low-order control-oriented models from this first principles model, the basic criterion being high fidelity representation of the dynamics of the regenerator when coupled to other dynamic components of the engine. We identify several nondimensional parameters that potentially categorize different modes of operation, and investigate the corresponding time-scale separation. A hierarchy of singularly perturbed models is derived in which acoustic dynamics are eliminated, periodic mesh dynamics are averaged, and the shape of the distributed regenerator gas state is approximated. In addition, since the reduced model is to be operated cyclically when connected to other parts of the engine, we develop such a feedback-aware model reduction algorithm based on a proper orthogonal decomposition (POD) with a chirped signal input (chirp-POD). This algorithm yields reduced models that are accurate over a range of engine operating frequencies.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3