Prediction of Traction and Microgeometry Effects on Rolling Contact Fatigue Life

Author:

Tallian T. E.1,Chiu Y. P.2,Van Amerongen E.3

Affiliation:

1. Technology Services, SKF Industries, Inc., King of Prussia, Pa.

2. SKF Industries, Inc., King of Prussia, Pa.

3. SKF Engineering and Research Centre B. V., Nieuwegein, Netherlands

Abstract

A refined mathematical model for the prediction of rolling contact fatigue is presented. It analyzes the effect of frictional traction in the contact surface, and of surface asperity slope, on the failure hazard functions applicable to surface and subsurface originated spalls. Major effects of traction on life arise from three sources: (a) increased surface distress micropitting; (b) increased microscopic shear stresses beneath surface furrows; (c) greatly increased macroscopic shear stresses in the zone relatively free from shear-stress which exists, in the absence of traction, between the asperity stress region and the Hertzian shear stress region. The major effect of steeper asperity slopes is to increase surface distress micropitting. A strong effect of traction on the angular orientation of the Hertz stress field is used to correlate experimentally observed changes in the Martin angle of orientation of deformation bands. The correlation permits calculation of the variation in the effective traction coefficient as a function of film thickness/roughness ratio. The traction coefficients obtained are then used as input to numerical life prediction. Satisfactory agreement is obtained between theory and experiment in predicting the life of seven groups of fatigue tested ball bearings with different surface roughness, run at different film thickness/roughness ratios.

Publisher

ASME International

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3