Affiliation:
1. Department of Mechanical Engineering, University of Victoria, Victora, BC V8W 3P6, Canada
2. Martec Ltd., 1888 Brunswick Street Suite 400, Halifax Nova Scotia B36 3J8 Canada
Abstract
Lagrangian equations of motion for finite amplitude azimuthal shear wave propagation in a compressible isotropic hyperelastic solid are obtained in conservation form with a source term. A Godunov-type finite difference procedure is used along with these equations to obtain numerical solutions for wave propagation emanating from a cylindrical cavity, of fixed radius, whose surface is subjected to the sudden application of a spatially uniform azimuthal shearing stress. Results are presented for waves propagating radially outwards; however, the numerical procedure can also be used to obtain solutions if waves are reflected radially inwards from a cylindrical outer surface of the medium. A class of strain energy functions is considered, which is a compressible generalization of the Mooney-Rivlin strain energy function, and it is shown that, for this class, an azimuthal shear wave can not propagate without a coupled longitudinal wave. This is in contrast to the problem of finite amplitude plane shear wave propagation with the neo-Hookean generalization, for which a shear wave can propagate without a coupled longitudinal wave. The plane problem is discussed briefly for comparison with the azimuthal problem.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献