A Method to Design and Optimize Axial Flow Cyclones for Gas–Liquid Separation

Author:

Anderson Kyle1,Zhang Xiang1,Abbasi Bahman1

Affiliation:

1. School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR 97331

Abstract

Abstract This article provides a detailed design guide, optimization, and performance assessment for air–water separation of an axial flow cyclone. Axial flow cyclones (also known as swirl tube demisters, mist eliminators, or Austin–Write cyclones) have a range of applications in several different industries. This method of gas–liquid separation offers many benefits. Among these are high liquid separation efficiencies (near 99%) and an inline design that allows them to be more easily fitted into existing piping structures. Despite these benefits, there are several design parameters that have not been optimized for performance in wastewater purification applications. This research fills the gap in the literature by quantifying the effect of new design parameters on water collection efficiency, ηwater collection, and the air bypass efficiency, ηair bypass, defined as the ratio of the air mass flowrate exiting through the desired air outlet over the inlet air mass flowrate. A set of wide-ranging experiments were conducted to study the effects of gas–liquid flow rates, tube geometry, and relative injection angles to optimize the water collection and air bypass efficiencies. The water collection efficiency exceeded 99.8% when the liquid streamline came in direct contact with the water drainage exit. An empirical correlation was developed to predict the swirl pitch as a function of the above design parameters. Predictions from the correlation were within 10% of the experimental results. The correlation can be used to design highly efficient in-line gas–liquid separators.

Funder

Advanced Research Projects Agency

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Experimental and Computational Fluid Dynamics Investigation of the Flow in and Around Once-Through Swirl Tubes;Ind. Eng. Chem. Res.,2006

2. Offshore Produced Water Management: A Review of Current Practice and Challenges in Harsh/Arctic Environments;Mar. Pollut. Bull.,2016

3. Numerical Analysis of Separation Performance of an Axial-Flow Cyclone for Supercritical CO2-Water Separation in CO2 Plume Geothermal Systems;Sep. Purif. Technol.,2020

4. Moisture Removal Systems in Geothermal Power Systems,2015

5. Simplified Design of Axial-Flow Cyclone Mist Eliminators;AIChE J.,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3