Affiliation:
1. Department of Energy and Mechanical Engineering, Shizuoka University, Hamamatsu, 432 Japan
Abstract
Calculations were carried out for fully developed turbulent flows within ducts of cross-shaped cross section using the numerical method based on the pressure correction method developed by Patankar and Spalding. The Reynolds stress driven secondary flows were simulated successfully by Launder and Ying’s algebraic stress model coupled to the k–ε turbulence model. A parametric study was made on the friction and heat transfer characteristics in terms of the parameter α associated with the decrease in the cross-sectional area, namely, α = 0 for a square duct, and α → 1 for infinite parallel plates. Through performance evaluations, it has been found that both the Reynolds analogy factor and the heat transfer coefficient under equal pumping power decrease slightly, while the heat transfer coefficient obtained with equal mass flow rate increases appreciably with α, suggesting effective turbulent heat transfer within ducts of cross-shaped cross section.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献