Numerical Prediction of Turbulent Flow and Heat Transfer Within Ducts of Cross-Shaped Cross Section

Author:

Nakayama A.1,Koyama H.1

Affiliation:

1. Department of Energy and Mechanical Engineering, Shizuoka University, Hamamatsu, 432 Japan

Abstract

Calculations were carried out for fully developed turbulent flows within ducts of cross-shaped cross section using the numerical method based on the pressure correction method developed by Patankar and Spalding. The Reynolds stress driven secondary flows were simulated successfully by Launder and Ying’s algebraic stress model coupled to the k–ε turbulence model. A parametric study was made on the friction and heat transfer characteristics in terms of the parameter α associated with the decrease in the cross-sectional area, namely, α = 0 for a square duct, and α → 1 for infinite parallel plates. Through performance evaluations, it has been found that both the Reynolds analogy factor and the heat transfer coefficient under equal pumping power decrease slightly, while the heat transfer coefficient obtained with equal mass flow rate increases appreciably with α, suggesting effective turbulent heat transfer within ducts of cross-shaped cross section.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulent heat transfer in a square duct;International Journal of Heat and Fluid Flow;1997-02

2. Experimental Study on Convective Heat Transfer for Turbulent Flow in a Square Duct With a Ribbed Rough Wall (Characteristics of Mean Temperature Field);Journal of Heat Transfer;1994-05-01

3. A LITERATURE SURVEY ON NUMERICAL HEAT TRANSFER (1986-1987);Numerical Heat Transfer, Part A: Applications;1989-02-01

4. Heat transfer—a review of 1986 literature;International Journal of Heat and Mass Transfer;1987-12

5. Steady film condensation and boiling adjacent to a body of arbitrary shape in a porous medium;International Journal of Heat and Fluid Flow;1987-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3