Trunk Angular Kinematics During Slip-Induced Backward Falls and Activities of Daily Living

Author:

Liu Jian1,Lockhart Thurmon E.2

Affiliation:

1. Division of Applied Science and Technology, Marshall University, One John Marshall Drive, CB 212, Huntington, WV 25755 e-mail:

2. Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061-0002

Abstract

Prior to developing any specific fall detection algorithm, it is critical to distinguish the unique motion features associated with fall accidents. The current study aimed to investigate the upper trunk angular kinematics during slip-induced backward falls and activities of daily living (ADLs). Ten healthy older adults (age = 75 ± 6 yr (mean ± SD)) were involved in a laboratory study. Sagittal trunk angular kinematics were measured using optical motion analysis system during normal walking, slip-induced backward falls, lying down, bending over, and various types of sitting down (SN). Trunk angular phase-plane plots were generated to reveal the motion features of falls. It was found that backward falls were characterized by a simultaneous occurrence of a slight trunk extension and an extremely high trunk extension velocity (peak average = 139.7 deg/s), as compared to ADLs (peak average = 84.1 deg/s). It was concluded that the trunk extension angular kinematics of falls were clearly distinguishable from those of ADLs from the perspective of angular phase-plane plot. Such motion features can be utilized in future studies to develop a new prior-to-impact fall detection algorithm.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference26 articles.

1. Fall Injury Episodes Among Noninstitutionalized Older Adults: United States, 2001–2003,2007

2. A Meta-Analysis of Fall Prevention Programs for the Elderly—How Effective Are They?;Nurs. Res.,2002

3. Guideline for the Prevention of Falls in Older Persons;J. Am. Geriatr. Soc.,2001

4. A Survey on Fall Detection: Principles and Approaches;Neurocomputing,2013

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3