Localized and Distributed Energy in Wave–Current Flow

Author:

Singh Santosh Kumar1,Khait Anatoliy2,Raushan Pankaj Kumar3,Debnath Koustuv3

Affiliation:

1. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

2. Centre for Mathematical Modelling and Flow Analysis, School of Computing Mathematics and Digital Technology, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom

3. Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, India

Abstract

Abstract Evaluation of localized and distributed in time spectral energy in wave–current coexisting environment is investigated in this study. In order to understand the inherent characteristics of the flow under consideration, the Hilbert-Huang transform (HHT) is introduced to determine the instantaneous frequency corresponding to the maximum energy carrying by the velocity field. This frequency is associated with the timescale of the most energetic velocity fluctuations. The intrinsic mean frequency of the intrinsic mode function (IMF) is reduced with the increase in the IMF number. It was shown that the maximum energy is concentrated close to the center of the IMF series. The spectral characteristics obtained by the HHT are carefully compared with those obtained by more conventional Fourier and wavelet transform (FFT and WT, respectively). Addition of the surface wave component to the velocity field of the current-only case leads to the extension of the frequency range containing the dominant portion of the energy.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3