Evaluating the Performance of a Modified Solar Air Heater With Pierced Cover and Packed Mesh Layers

Author:

Nowzari Raheleh1,Saygin Hasan23,Aldabbagh L.B.Y.4

Affiliation:

1. Department of Mechanical Engineering, Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey

2. Department of Mechanical Engineering, Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey;

3. Application and Research Center for Advanced Studies, Istanbul Aydin University, 34295 Sefakoy, Istanbul, Turkey

4. Department of Mechatronics Engineering, College of Engineering, Mosul University, Mosul 00964, Iraq

Abstract

Abstract An experimental study was conducted to evaluate the thermal efficiency of a modified solar air heater. In the current design, air enters the collector through holes in front glass, passes through mesh layers, and exits at the backside of the air heater. A centrifugal fan was used to circulate air through the system. The design offers low construction costs and less solar radiation reflected from the collector. The modified collector was examined with various bed heights (30, 50, and 70 mm) and different mass flowrates of air varying from 0.011 kg/(s m2) to 0.043 kg/(s m2). The results showed that a counter flow collector with pierced cover had 5.6–9.7% higher efficiency than the single-pass one. The average efficiencies of the current design collector were found to be 55.2%, 44.6%, and 39.7% for the single-pass and 60.8%, 50.9% and 45.4% for the double-pass collector at 30, 50, and 70 mm bed heights and airflow rate of 0.043 kg/(s m2), respectively. The thermohydraulic efficiency, temperature difference, and perforated cover surface temperature were analyzed at each test and their effects on the system performance were evaluated. The highest amount of pressure drop through the collector was measured in the collector with a 70-mm bed height and a maximum air flowrate.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3