Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model

Author:

Li Wei1,Garg Akhil2,Xiao Mi1,Gao Liang1

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 437004, China

Abstract

Abstract The power of electric vehicles (EVs) comes from lithium-ion batteries (LIBs). LIBs are sensitive to temperature. Too high and too low temperatures will affect the performance and safety of EVs. Therefore, a stable and efficient battery thermal management system (BTMS) is essential for an EV. This article has conducted a comprehensive study on liquid-cooled BTMS. Two cooling schemes are designed: the serpentine channel and the U-shaped channel. The results show that the cooling effect of two schemes is roughly the same, but the U-shaped channel can significantly decrease the pressure drop (PD) loss. The U-shaped channel is parameterized and modeled. A machine learning method called the Gaussian process (GP) model has been used to express the outputs such as temperature difference, temperature standard deviation, and pressure drop. A multi-objective optimization model is established using GP models, and the NSGA-II method is employed to drive the optimization process. The optimized scheme is compared with the initial design. The main findings are summarized as follows: the velocity of cooling water v decreases from 0.3 m/s to 0.22 m/s by 26.67%. Pressure drop decreases from 431.40 Pa to 327.11 Pa by 24.18%. The optimized solution has a significant reduction in pressure drop and helps to reduce parasitic power. The proposed method can provide a useful guideline for the liquid cooling design of large-scale battery packs.

Funder

HUST Academic Frontier Youth Team

HUST Graduate Innovation and Entrepreneurship Fund

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3