Affiliation:
1. School of Mechanical Engineering, Qingdao University of Technology, 777 Jialingjiang Road, Huangdao District, Qingdao 266520, China e-mail:
Abstract
A new method for solving the shear stress and the effective viscosity of Eyring shear-thinning fluid in thermal elastohydrodynamic lubrication (EHL) was proposed and applied to two models. Model 1 is the thermal EHL model with one-direction velocity, and model 2 is the spinning thermal EHL model in which the velocity varies with coordinates. Comparisons between the new and the existing method were carried out. Results show that only replacing the shear strain rate of model 1 with that of model 2, the shear stress and the effective viscosity of model 2 for Eyring shear-thinning fluid can be obtained. For model 1, results obtained with the two methods are the same. The new method can be qualified and applied into model 2. It is proved that the new method has higher efficiency for shear-thinning fluid than the existing method. Therefore, the new method is more efficient and can be used for spinning Eyring shear-thinning thermal EHL.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献