Clinical Evaluation of an Automatic Oxygen Control System for Premature Infants Receiving High-Flow Nasal Cannula for Respiratory Support: A Pilot Study

Author:

Hou Xuefeng1,Faqeeh Akram2,Amjad Ramak3,Pardalos John3,Fales Roger1

Affiliation:

1. Mechanical and Aerospace Engineering, University of Missouri-Columbia, E2412 Lafferre Hall, Columbia, MO 65211

2. Department of Mechanical Engineering Technology, Yanbu Industrial College, Yanbu 41912, Saudi Arabia

3. Neonatology, University of Missouri Health, 400 N. Keene Street, Columbia, MO 65212

Abstract

Abstract A pilot clinical study was conducted that compared the peripheral oxygen saturation (SpO2) targeting performance of an automatic oxygen control system with manual oxygen control, which is the standard of care for preterm and low birth weight infants on high-flow nasal cannula (HFNC). The new oxygen control device studied was used to automatically adjust the fraction of inspired oxygen (FiO2) according to a desired SpO2 target setpoint and measured feedback signals including the SpO2 and other signals. A crossover study was designed with several endpoints including the comparison of the percentage of time that the SpO2 was within the target range with the automatic oxygen control device versus manual oxygen control. Other metrics were also compared to assess the performance of the system including the number of bradycardia events. The pilot study included six patients that fit the inclusion criteria. The results showed that there were improvements in all of the measured outcomes considered including statistically significant improvements in the number of bradycardia events during the period when the automatic oxygen control device was used.

Funder

National Institute of Child Health and Human Development

University of Missouri

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3