Direct Linearization Method Kinematic Variation Analysis

Author:

Leishman Robert C.1,Chase Kenneth W.1

Affiliation:

1. Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602

Abstract

Velocity and acceleration analysis is an important tool for predicting the motion of mechanisms. The results, however, may be inaccurate when applied to manufactured products due to the process variations that occur in production. Small changes in mechanism dimensions can accumulate and propagate, causing a significant variation in the performance of the mechanism. A new application of statistical analysis is presented for predicting the effects of variation on mechanism kinematic performance. The new method is an extension of the direct linearization method developed for static assemblies. This method provides a solution that is a closed form. It may be applied to two-dimensional mechanisms to predict variation in velocity and acceleration due to dimensional variations. It is also shown how form, orientation, and position variations may be included in the analysis to analyze variations that occur within the joints. Only two assemblies are analyzed to characterize the distribution: The first determines the mean, and the second estimates the variance. The system is computationally efficient and well suited for design iteration.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3