A Novel Sampling Technique for Probabilistic Static Coverage Problems

Author:

Zhang Binbin1,Adurthi Nagavenkat2,Rai Rahul3,Singla Puneet2

Affiliation:

1. DART Lab, Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260

2. LAIRS Lab, Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260

3. DART Lab, Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260 e-mail:

Abstract

Resource allocation in the presence of constraints is an important activity in many systems engineering problems such as surveillance, infrastructure planning, environmental monitoring, and cooperative task performance. The resources in many important problems are agents such as a person, machine, unmanned aerial vehicles (UAVs), infrastructures, and software. Effective execution of a given task is highly correlated with effective allocation of resources to execute the task. An important class of resource allocation problem in the presence of limited resources is static coverage problem. In static coverage problems, it is necessary to allocate resources (stationary configuration of agents) to cover an area of interest so that an event or spatial property of the area can be detected or monitored with high probability. In this paper, we outline a novel sampling algorithm for the static coverage problem in presence of probabilistic resource intensity allocation maps (RIAMs). The key intuition behind our sampling approach is to use the finite number of samples to generate an accurate representation of RIAM. The outlined sampling technique is based on an optimization framework that approximates the RIAM with piecewise linear surfaces on the Delaunay triangles and optimizes the sample placement locations to decrease the difference between the probability distribution and Delaunay triangle surface. Numerical results demonstrate that the algorithm is robust to the initial sample point locations and has superior performance in a wide range of theoretical problems and real-life applications. In a real-life application setting, we demonstrate the efficacy of the proposed algorithm to predict the position of wind stations for monitoring wind speeds across the U.S. The algorithm is also used to give recommendations on the placement of police cars in San Francisco and weather buoys in Pacific Ocean.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobile Sensor Networks and Control: Adaptive Sampling of Spatiotemporal Processes;Annual Review of Control, Robotics, and Autonomous Systems;2020-05-03

2. A Sequential Sampling Algorithm for Multistage Static Coverage Problems;Journal of Computing and Information Science in Engineering;2018-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3