Seed Propagation of Spiraea L. Species in the Botanical Garden of the Ural Federal University

Author:

Mikhalishchev Roman V.ORCID, ,Srodnykh Tatyana B.ORCID,

Abstract

Spireas (Spiraea L.) are widely used in landscaping, while the number of spirea species and cultivars used in Yekaterinburg landscaping is small. Information concerning seed germination will enable the development of effective methods of plant propagation for various purposes, including landscaping. Spirea seeds collected in the botanical garden of the Ural Federal University served as research material. Seed germination was monitored from 2015 to 2018. The study of daily dynamics of seed germination showed that the most active sprouting seeds were the following: S. salicifolia L. and S. humilis Pojark. Seeds of these spireas germinated on the 2nd day after sowing. Seeds of other species began to germinate only on the 3rd day after sowing. The following seeds were highly germinative: S. salicifolia (89.5–97.8 %), taxonomically related to the previous species S. humilis (77.0–96.3 %), and a polymorphic species with a wide range in Eurasia S. chamaedryfolia (71.8–92.5 %). Seed germination of other spireas varied from year to year. This may be related to the lower adaptive potential of these species in the Middle Urals. Perhaps vegetative propagation will be economically useful for these species. The field germination was lower than laboratory germination (from 12.5 to 24.5 % for different species). At the same time, all spireas, except for Spiraea ussuriensis, are capable of regenerating naturally to some extent in the Botanical Garden. Excessive moistening and low temperatures during the growing season and high average winter temperatures had a negative effect on growth and development of spireas and, consequently, on the quality of seeds produced by them. The depth of snow cover in March has a direct correlation with seed quality, as it provides sufficient moisture in the soil at the beginning of the growing season.

Publisher

M.V. Lomonosov Northern (Arctic) Federal University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3