The Use of Nanosized ZnO in Compositions for Wood Protective Treatment

Author:

Tomina Elena V.ORCID, ,Dmitrenkov Aleksandr I.ORCID,Zhuzhukin Konstantin V.ORCID, , ,

Abstract

Wood natural structure can be considered as a suitable matrix for modifying with nanoparticles of various chemical nature. The research aims at obtaining a woodbased nanocomposite by modifying wood with compositions of waste vegetable oil and zinc oxide nanoparticles and studying the properties of this nanocomposite. Silver birch (Betula pendula) wood samples were chosen as study objects. Refined sunflower oil left after cooking was the oil base of the developed impregnating compositions; nanosized zinc oxide powder was the filler and modifier. The sol-gel method providing a narrow range of particle size distribution was used for synthesis of zinc oxide nanoparticles from Zn(NO3)2·6H2O as starting material. Aqueous ammonia solution was used as a precipitant. The synthesized zinc oxide nanoparticles contained no impurities, were mostly spherical and had the size less than 20 nm. The size of zinc oxide agglomerates was no more than 100 nm, allowing them to easily penetrate into the wood material cavities. A stable suspension of synthesized zinc oxide nanopowder in used sunflower oil was prepared and applied for wood modification by hot-and-cold bath treatment. It was found that the use of nanoscale zinc oxide accelerates the drying process of vegetable oil coating, increases the strength of such a coating and its resistance to external influences. The use of developed compositions improves the hydrophobic properties of wood, its moisture and water resistance, as well as reduces swelling in the tangential and radial directions. We have chosen the optimal dosage of nanosized zinc oxide (0.1 %) in compositions based on waste vegetable oil for protective treatment of birch wood. Impregnating compositions on the base of waste vegetable oil are environmentally safe and their use allows recycling food industry wastes.

Publisher

M.V. Lomonosov Northern (Arctic) Federal University

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3