Digital Scanning of Woody Plant Growth and Development

Author:

Kabonen Alexey V.ORCID, ,Gavrilova Olga I.ORCID,Kishchenko Ivan T.ORCID

Abstract

The paper presents a photometric device and a procedure for quickly recording the characteristics of organs or parts of woody plants during their growth in the field conditions with maximum detail and accuracy. The procedure was tested in the study of seasonal dynamics of Viburnum lantana L. introduced in Middle Taiga and a species of local flora V. opulus L. The research results show that there are differences in the species seasonal dynamics rhythm associated with the influence of the current and previous environmental conditions. Air temperature explains the greatest dependence of the beginning of growth and the majority of phenodates. It was found that early beginning and end of vegetation is typical for V. opulus. The growth and development of the introduced V. lantana occur in a warmer environment. Shoots of V. opulus begin to grow on May 18–21, after 11 days growth is observed in V. lantana. The earliest terms of shoot growth cessation were found in V. opulus (June 19); V. lantana shoot growth ends 7 days later. The longest shoots of the current year (101 mm) were formed in V. lantana, which is 26 mm longer than in V. opulus. The beginning of shoots growth in V. opulus is observed at +4.7 °C average daily air temperature and the sum of positive temperatures 187 °C, in V. lantana this process begins at +8.8 °C and 308 °C, respectively, and the species requires 6 days with average daily temperature above +10 °C to start growing. Thus, the studied Viburnum species can be conditionally divided into 2 groups: early (V. opulus) and late (V. lantana) beginning and ending seasonal development. Cultivated in the taiga zone V. lantana belongs to the highly promising introduced species, so it can be recommended for introduction into cultural cenoses and landscaping of settlements in the taiga zone. Acknowledgments: The research was supported by the Karelia Innovation Business Startup MVP within the framework of the Program for Support of Applied Research and Development of Students and Postgraduate Students of the Petrozavodsk State University. For citation: Kabonen A.V., Gavrilova O.I., Kishchenko I.T. Digital Scanning of Woody Plant Growth and Development. Lesnoy Zhurnal = Russian Forestry Journal, 2022, no. 6, pp. 55–70. (In Russ.). https://doi.org/10.37482/0536-1036-2022-6-55-70

Publisher

M.V. Lomonosov Northern (Arctic) Federal University

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3